Оперативная память РАМ что это такое?

Содержание

Ram на компьютере и его основные функции!

Оперативная память РАМ что это такое?

Сочетание букв RAM вполне себе очевидное. Нередко его заменяют русскоязычным аналогом ОЗУ.

Рассмотрим зачем требуется Ram в компьютере, что это такое и в чём оно измеряется?

Определение

Расшифровка англоязычного варианта выглядит как Random Access Memory. Переводится это как память с произвольным доступом. А вот русскоязычная аббревиатура обозначает Оперативное запоминающее устройство, что несколько ближе к сути дела.

Куда как чаще пользователь встречает варианты названия «оперативка», «РАМка» или просто «память». Кстати, последний термин крайне неточный, поскольку может подразумевать:

  • объём жёсткого диска;
  • объём оперативной памяти;
  • объём отдельных локальных дисков;
  • объём памяти видеочипа.

Поэтому вариант «оперативка» или «оператива» получил более широкое распространение.

Назначение

Вне зависимости от названия функции элемента не меняются. Он предоставляет для операционной системы и программ доступ к часто используемым компонентам (поэтому считается, что компоненты загружаются в оперативную память) с целью повышения быстродействия.

Этим полный функционал RAM не заканчивается. Также она участвует в загрузке операционной системы. Отвечает за запись распакованных компонентов, которые начинают выполняться в ней и продолжают свою распаковку в процессе дальнейшей деятельности.

Звучит сложно, а на деле при загрузке Windows файл записывается с жёсткого диска в ОЗУ откуда уже начинает исполняться, вызывает распаковку других данных и удаляется из этой памяти.

Принцип работы

Рассматривается, по какому принципу происходит работа элемента, а не физические процессы, которые при этом протекают. Основное отличие «оперативки» от постоянной памяти «жёсткого диска» заключается в том, что из первой данные постоянно удаляются.

Предположим, что была вызвана программа:

  1. В ОЗУ загружается файл, содержащий порядок загрузки компонентов программы.
  2. Исполняемый файл обращается к ОЗУ, сверяясь со списком и ставя галочки о проделанной работе.
  3. Как только все галочки собраны временный файл удаляется и на его место записывается что-то другое.

Постоянные циклы записи и удаления характерны работе RAM. Количество таких циклов за несколько минут работы в разы превышает количество аналогичных действий на HDD.

Второй особенностью является случайное место записи этих документов. В «оперативке» царит полный хаос и стройной структурой там не пахнет: где есть место, там документы и записаны.

Единицы измерения

Постоянство технологического прогресса привело к тому, что 30 лет назад принято было измерять объём ОЗУ в кб или единицах Мб. Спустя же указанное время единица измерения (особенно сильный скачок произошёл с 2004-го по 2010 год) сместилась к Гб. Сейчас никого не удивить объёмом ОЗУ в 16 Гб, а под отдельные задачи принято выделять до 256 Гб.

Средний же, ПК обычного пользователя оснащается 4-8 Гб ОЗУ (число всегда должно быть кратно двум – об этом далее). Для любителей провести время за игрой ориентиром служит всё-таки 32 Гб, хотя при умелом обращении можно спокойно играть и с 4 Гб «на борту» (если в системных требованиях не требуется больше 8 Гб).

Естественно, RAM может давать ошибки, что бывает крайне редко.  Но проверка таких ошибок и возможности их появления производится следующим образом (описание memtest и его настройки можно найти отдельно и эту программу, не смотря на высшую точность результатов, игнорируем):

  1. При запуске Windows (до начала загрузки) нажимаем F8. Чтобы появилось следующее окно.
  2. С помощью клавиши «Tab» (отмечена красным) переключаем на «Диагностика памяти» (отмечена зелёным) и нажимаем кнопку «Enter» ввод, чтобы запустить проверку.
  3. Процесс этот отнимает до 40 минут (бывает и больше, в зависимости от объёма RAM).
  4. Статус несколько раз будет доходить до 100%.

Эта процедура не гарантирует идеальной проверки и её результаты лучше всего контролировать через Memtest или в сервисном центре. Особенно если замечены какие-то ошибки в работе ОЗУ.

Разновидности

Различают компьютерную RAM двух основных видов: для ПК и для ноутбука. С точки зрения внешнего вида они отличаются существенно (размер, положение пазов), а вот с точки зрения микроэлектроники – различий не имеют.

Поэтому данный аспект классификации будет опущен. Просто будут поданы изображения ОЗУ указанного поколения для ПК и ноутбука.

DDR или DDR1. Имеет максимальный объём планок в 2 Гб. Цена на такую память только выросла, поскольку нередко она требуется для организаций, где не могут списать компьютеры, которые даже «барахлом» назвать не выходит.

Увы, работать хоть как-то нужно, поэтому найти и купить такую планку – огромная удача. Найти ноутбучный вариант на 2 Гб, сродни выигрышу в лотерею.

Примечание: На Aliexpress встречаются планки DDR1 на 4 Гб. Пожалуй, такое приобретение будет сомнительным.

DDR2. Более ходовой вариант, но тоже отживающий своё. Изменение используемых чипов и принципов передачи данных позволили повысить объём памяти в одной планке.

Цена ещё не успела подскочить, поскольку предложение в разы превосходит спрос. Максимальный объём планки до 4 Гб (встречается, но редко).

Примечание: Следует учитывать не только объём памяти и поколение ОЗУ, но и тактовую частоту. Некоторые сочетания частота/объём просто невозможны.

DDR3. На данный момент самый распространённый вариант. Устанавливается во все устройства. За пределы DDR3 выходят только чипы видеопамяти, где используется DDR5. Такая несправедливость вызвана необходимостью обеспечивать слот питанием. карты с DDR5 обладают дополнительным гнездом питания.

Максимальный объём памяти на одной планке 32 Гб (впрочем, есть информация о работе над планками со 128 Гб памяти).

Такие разновидности RAM можно встретить сегодня. Различаются они по поколению, используемым чипам, количестве чипов. Внешние различия заключаются в положении так называемого «ключа», который препятствует установки оперативки другого поколения в слоты для следующих.

Маленькое правило установки

Если в компьютер ставится дополнительная планка ОЗУ, то следует учитывать такие правила:

  • всегда парная. Не может быть числа планок 3 или 5. Использовать 1 планку не возбраняется. В зависимости от ситуации правилом можно пренебрегать, но рано или поздно попадётся программа, которая адресует обращение в несуществующий раздел памяти (туда, где должна быть зеркальная 4 планка), чем вызовет BSOD;
  • зеркальная установка. Планки ставятся в слоты с номерами 1-3 и 2-4. При этом планки должны иметь одинаковый объём памяти. Примечание аналогично предыдущему пункту. Особенно игры «любят ронять» систему такими обращениями;
  • «спасибо Asus». Эти изготовители в ряде моделей ноутбуков сделали 2 пустые планки и напаяли на материнскую плату основную ОЗУ. Повышение объёма RAM на таком ноутбуке часто становится пыткой и единого совета об этом нет. Перед покупкой ноутбука проверяйте в интернете гайды по его разборке.

Источник: https://vacenko.ru/ram-na-kompyutere-i-ego-osnovnye-funkcii/

Взгляд изнутри: Flash-память и RAM

Оперативная память РАМ что это такое?

Новый Год – приятный, светлый праздник, в который мы все подводим итоги год ушедшего, смотрим с надеждой в будущее и дарим подарки. В этой связи мне хотелось бы поблагодарить всех хабра-жителей за поддержку, помощь и интерес, проявленный к моим статьям (1, 2, 3, 4).

Если бы Вы когда-то не поддержали первую, не было и последующих (уже 5 статей)! Спасибо! И, конечно же, я хочу сделать подарок в виде научно-популярно-познавательной статьи о том, как можно весело, интересно и с пользой (как личной, так и общественной) применять довольно суровое на первый взгляд аналитическое оборудование.

Сегодня под Новый Год на праздничном операционном столе лежат: USB-Flash накопитель от A-Data и модуль SO-DIMM SDRAM от Samsung.

Теоретическая часть

Постараюсь быть предельно краток, чтобы все мы успели приготовить салат оливье с запасом к праздничному столу, поэтому часть материала будет в виде ссылок: захотите – почитаете на досуге…

Какая память бывает?

На настоящий момент есть множество вариантов хранения информации, какие-то из них требуют постоянной подпитки электричеством (RAM), какие-то навсегда «вшиты» в управляющие микросхемы окружающей нас техники (ROM), а какие-то сочетают в себе качества и тех, и других (Hybrid). К последним, в частности, и принадлежит flash.

Вроде бы и энергонезависимая память, но законы физики отменить сложно, и периодически на флешках перезаписывать информацию всё-таки приходится.

Тут можно подробнее ознакомиться с ниже приведённой схемой и сравнением характеристик различных типов «твердотельной памяти».

Или тут – жаль, что я был ещё ребёнком в 2003 году, в таком проекте не дали поучаствовать…

Современные типы «твердотельной памяти». Источник

Единственное, что, пожалуй, может объединять все эти типы памяти – более-менее одинаковый принцип работы. Есть некоторая двумерная или трёхмерная матрица, которая заполняется 0 и 1 примерно таким образом и из которой мы впоследствии можем эти значения либо считать, либо заменить, т.е. всё это прямой аналог предшественника – памяти на ферритовых кольцах.

Читайте также  Можно ли ставить разную оперативную память ddr4?

Что такое flash-память и какой она бывает (NOR и NAND)?

Начнём с flash-памяти. Когда-то давно на небезызвестном ixbt была опубликована довольно подробная статья о том, что представляет собой Flash, и какие 2 основных сорта данного вида памяти бывают.

В частности, есть NOR (логическое не-или) и NAND (логическое не-и) Flash-память (тут тоже всё очень подробно описано), которые несколько отличаются по своей организации (например, NOR – двумерная, NAND может быть и трехмерной), но имеют один общий элемент – транзистор с плавающим затвором.
Схематическое представление транзистора с плавающим затвором.

Источник

Итак, как же это чудо инженерной мысли работает? Вместе с некоторыми физическими формулами это описано тут. Если вкратце, то между управляющим затвором и каналом, по которому ток течёт от истока к стоку, мы помещаем тот самый плавающий затвор, окружённый тонким слоем диэлектрика.

В результате, при протекании тока через такой «модифицированный» полевой транзистор часть электронов с высокой энергией туннелируют сквозь диэлектрик и оказываются внутри плавающего затвора. Понятно, что пока электроны туннелировали, бродили внутри этого затвора, они потеряли часть энергии и назад практически вернуться не могут.

NB: «практически» — ключевое слово, ведь без перезаписи, без обновления ячеек хотя бы раз в несколько лет Flash «обнуляется» так же, как оперативная память, после выключения компьютера.

Там же, на ixbt, есть ещё одна статья, которая посвящена возможности записи на один транзистор с плавающим затвором нескольких бит информации, что существенно увеличивает плотность записи.

В случае рассматриваемой нами флешки память будет, естественно, NAND и, скорее всего, multi-level cell (MLC).

Если интересно продолжить знакомиться с технологиями Flash-памяти, то тут представлен взгляд из 2004 года на данную проблематику. А здесь (1, 2, 3) некоторые лабораторные решения для памяти нового поколения. Не думаю, что эти идеи и технологии удалось реализовать на практике, но, может быть, кто-то знает лучше меня?!

Что такое DRAM?

Если кто-то забыл, что такое DRAM, то милости просим сюда. Опять мы имеем двумерный массив, который необходимо заполнить 0 и 1. Так как на накопление заряда на плавающем затворе уходит довольно продолжительное время, то в случае RAM применяется иное решение. Ячейка памяти состоит из конденсатора и обычного полевого транзистора.

При этом сам конденсатор имеет, с одной стороны, примитивное физическое устройство, но, с другой стороны, нетривиально реализован в железе:
Устройство ячейки RAM. Источник

Опять-таки на ixbt есть неплохая статья, посвящённая DRAM и SDRAM памяти. Она, конечно, не так свежа, но принципиальные моменты описаны очень хорошо.

Единственный вопрос, который меня мучает: а может ли DRAM иметь, как flash, multi-level cell? Вроде да, но всё-таки…

Flash

Те, кто пользуется флешками довольно давно, наверное, уже видели «голый» накопитель, без корпуса. Но я всё-таки кратко упомяну основные части USB-Flash-накопителя:
Основные элементы USB-Flash накопителя: 1. USB-коннектор, 2. контроллер, 3. PCB-многослойная печатная плата, 4. модуль NAND памяти, 5. кварцевый генератор опорной частоты, 6.

LED-индикатор (сейчас, правда, на многих флешках его нет), 7. переключатель защиты от записи (аналогично, на многих флешках отсутствует), 8. место для дополнительной микросхемы памяти. Источник

Пойдём от простого к сложному. Кварцевый генератор (подробнее о принципе работы тут).

К моему глубокому сожалению, за время полировки сама кварцевая пластинка исчезла, поэтому нам остаётся любоваться только корпусом.

Корпус кварцевого генератора Случайно, между делом, нашёл-таки, как выглядит армирующее волокно внутри текстолита и шарики, из которых в массе своей и состоит текстолит. Кстати, а волокна всё-таки уложены со скруткой, это хорошо видно на верхнем изображении:
Армирующее волокно внутри текстолита (красными стрелками указаны волокна, перпендикулярные срезу), из которого и состоит основная масса текстолита А вот и первая важная деталь флешки – контроллер:
Контроллер. Верхнее изображение получено объединением нескольких СЭМ-микрофотографий Признаюсь честно, не совсем понял задумку инженеров, которые в самой заливке чипа поместили ещё какие-то дополнительные проводники. Может быть, это с точки зрения технологического процесса проще и дешевле сделать. После обработки этой картинки я кричал: «Яяяяязь!» и бегал по комнате. Итак, Вашему вниманию представляет техпроцесс 500 нм во всей свой красе с отлично прорисованными границами стока, истока, управляющего затвора и даже контакты сохранились в относительной целостности:
«Язь!» микроэлектроники – техпроцесс 500 нм контроллера с прекрасно прорисованными отдельными стоками (Drain), истоками (Source) и управляющими затворами (Gate) Теперь приступим к десерту – чипам памяти. Начнём с контактов, которые эту память в прямом смысле этого слова питают. Помимо основного (на рисунке самого «толстого» контакта) есть ещё и множество мелких. Кстати, «толстый» < 2 диаметров человеческого волоса, так что всё в мире относительно:
СЭМ-изображения контактов, питающих чип памяти Если говорить о самой памяти, то тут нас тоже ждёт успех. Удалось отснять отдельные блоки, границы которых выделены стрелочками. Глядя на изображение с максимальным увеличением, постарайтесь напрячь взгляд, этот контраст реально трудно различим, но он есть на изображении (для наглядности я отметил отдельную ячейку линиями):
Ячейки памяти 1. Границы блоков выделены стрелочками. Линиями обозначены отдельные ячейки Мне самому сначала это показалось как артефакт изображения, но обработав все фото дома, я понял, что это либо вытянутые по вертикальной оси управляющие затворы при SLC-ячейке, либо это несколько ячеек, собранных в MLC. Хоть я и упомянул MLC выше, но всё-таки это вопрос. Для справки, «толщина» ячейки (т.е. расстояние между двумя светлыми точками на нижнем изображении) около 60 нм. Чтобы не лукавить – вот аналогичные фото с другой половинки флешки. Полностью аналогичная картина:
Ячейки памяти 2. Границы блоков выделены стрелочками. Линиями обозначены отдельные ячейки Конечно, сам чип – это не просто набор таких ячеек памяти, внутри него есть ещё какие-то структуры, принадлежность которых мне определить не удалось:
Другие структуры внутри чипов NAND памяти

DRAM

Всю плату SO-DIMM от Samsung я, конечно же, не стал распиливать, лишь с помощью строительного фена «отсоединил» один из модулей памяти. Стоит отметить, что тут пригодился один из советов, предложенных ещё после первой публикации – распилить под углом.

Поэтому, для детального погружения в увиденное необходимо учитывать этот факт, тем более что распил под 45 градусов позволил ещё получить как бы «томографические» срезы конденсатора. Однако по традиции начнём с контактов.

Приятно было увидеть, как выглядит «скол» BGA и что собой представляет сама пайка:
«Скол» BGA-пайки А вот и второй раз пора кричать: «Язь!», так как удалось увидеть отдельные твердотельные конденсаторы – концентрические круги на изображении, отмеченные стрелочками. Именно они хранят наши данные во время работы компьютера в виде заряда на своих обкладках.

Судя по фотографиям размеры такого конденсатора составляют около 300 нм в ширину и около 100 нм в толщину. Из-за того, что чип разрезан под углом, одни конденсаторы рассечены аккуратно по середине, у других же срезаны только «бока»:
DRAM память во всей красе

Если кто-то сомневается в том, что эти структуры и есть конденсаторы, то тут можно посмотреть более «профессиональное» фото (правда без масштабной метки).

Единственный момент, который меня смутил, что конденсаторы расположены в 2 ряда (левое нижнее фото), т.е. получается, что на 1 ячейку приходится 2 бита информации. Как уже было сказано выше, информация по мультибитовой записи имеется, но насколько эта технология применима и используется в современной промышленности – остаётся для меня под вопросом. Конечно, кроме самих ячеек памяти внутри модуля есть ещё и какие-то вспомогательные структуры, о предназначении которых я могу только догадываться:
Другие структуры внутри чипа DRAM-памяти

Послесловие

Помимо тех ссылок, что раскиданы по тексту, на мой взгляд, довольно интересен данный обзор (пусть и от 1997 года), сам сайт (и фотогалерея, и chip-art, и патенты, и много-много всего) и данная контора, которая фактически занимается реверс-инжинирингом. К сожалению, большого количества видео на тему производства Flash и RAM найти не удалось, поэтому довольствоваться придётся лишь сборкой USB-Flash-накопителей:

P.S.: Ещё раз всех с наступающим Новым Годом чёрного водяного дракона!!!

Странно получается: статью про Flash хотел написать одной из первых, но судьба распорядилась иначе. Скрестив пальцы, будем надеяться, что последующие, как минимум 2, статьи (про биообъекты и дисплеи) увидят свет в начале 2012 года. А пока затравка — углеродный скотч:
Углеродный скотч, на котором были закреплены исследуемые образцы. Думаю, что и обычный скотч выглядит похожим образом
Во-первых, полный список опубликованных статей на Хабре:

Вскрытие чипа Nvidia 8600M GT, более обстоятельная статья дана тут: Современные чипы – взгляд изнутри

Взгляд изнутри: CD и HDD
Взгляд изнутри: светодиодные лампочки
Взгляд изнутри: Светодиодная промышленность в России
Взгляд изнутри: Flash-память и RAM
Взгляд изнутри: мир вокруг нас
Взгляд изнутри: LCD и E-Ink дисплеи
Взгляд изнутри: матрицы цифровых камер
Взгляд изнутри: Plastic Logic
Взгляд изнутри: RFID и другие метки
Взгляд изнутри: аспирантура в EPFL. Часть 1
Взгляд изнутри: аспирантура в EPFL. Часть 2
Взгляд изнутри: мир вокруг нас — 2
Взгляд изнутри: мир вокруг нас — 3
Взгляд изнутри: мир вокруг нас — 4
Взгляд изнутри: 13 LED-ламп и бутылка рома. Часть 1
Взгляд изнутри: 13 LED-ламп и бутылка рома. Часть 2
Взгляд изнутри: 13 LED-ламп и бутылка рома. Часть 3
Взгляд изнутри: IKEA LED наносит ответный удар
Взгляд изнутри: а так ли хороши Filament-лампы? и 3DNews:

Читайте также  Как проверить сколько оперативной памяти используется?

Микровзгляд: сравнение дисплеев современных смартфонов

Во-вторых, помимо блога на HabraHabr, статьи и видеоматериалы можно читать и смотреть на Nanometer.ru, , а также Dirty.

В-третьих, если тебе, дорогой читатель, понравилась статья или ты хочешь простимулировать написание новых, то действуй согласно следующей максиме: «pay what you want»

Yandex.Money 41001234893231 WebMoney (R296920395341 или Z333281944680)
Иногда кратко, а иногда не очень о новостях науки и технологий можно почитать на моём Телеграм-канале — милости просим;)

Источник: https://habr.com/post/135515/

Оперативная память ОЗУ компьютера или ноутбука — что это и с чем едят?!

Оперативная память РАМ что это такое?

Аббревиатура ОЗУ расшифровывается как Оперативное Запоминающее Устройство. В мире компьютеров, ноутбуков планшетов и смартфонов, оперативная память (ОЗУ) — это специальное устройство, предназначенное для хранения и текущего изменения информации при работе компьютера.  Для чего она нужна?! Попробую объяснить принцип работы оперативки «на пальцах».

Допустим, Вы включили компьютер и запустили какую-нибудь программу. Сначала она будет считана с жесткого диска компьютера или ноутбука, а затем — перенесена в оперативную память.

Здесь она будет висеть до момента завершения работы приложения и, при необходимости, будет изменять, стирать, дописывать, переписывать значения используемых параметров и переменных, необходимых для функционирования программы.
Но зачем это нужно, если приложение уже записано в постоянной памяти (ПЗУ), то есть на жёстком диске?! А вот зачем.

ОЗУ работает с очень быстрой скоростью, во много раз большей скорости считывания и изменения данных на винчестере компа. Именно поэтому, чтобы софт работал быстро, операционная система и переносит его в оперативную память. особенность её работы — информация теряется после выключения питания ПК. 

Конструктивно, такой вид памяти выполнен в виде небольшой платы с напаянными на неё в ряд площадками с ячейками памяти. Ячейки могут располагаться как с одной, так и с обеих сторон микросхемы. На сленге сисадминов, одна такая плата называется «банка» или «плашка».

За границей используется аббревиатура RAM — Random Access Memory — что в переводе означает «Запоминающее устройство с произвольной выборкой».

Основные характеристики работы оперативной памяти — скорость передачи данных (ГБит/с) и частота тактового сигнала шины памяти (MHz).

Со скоростью передачи информации думаю понятно. А что такое «частота оперативной памяти»?! Простыми словами — это скорость выполнения операций. Более сложным языком — скорость обмена сигналами между центральным процессором ПК и модулем RAM. Чем выше частота, тем быстрее работает ОЗУ. При этом стоит учитывать ещё и так называемые «Тайминги».

Тайминг — это задержка сигнала по времени. Другое название — Латентность. Представьте себе, что два совершенно одинаковых по скорости и частоте модуля памяти могут иметь совершенно разную пропускную способность. А всё дело как раз в таймингах, которые показывают за сколько тактовых циклов процессора чип успевает выполнить определённую операцию.

Чем ниже тайминги, тем быстрее работает RAM.

DIMM, SDRAM, DDR — что это?!

Эти аббревиатуры, используемые для маркировки планок оперативной памяти и означающие используемую технологию производства и тип используемых микросхем.

DIMM — это двухсторонняя плата, где контакты к ячейкам RAM расположены по обе стороны модуля — Dual In-Line Memory Module. Они пришли на смену SIMM, который на сегодняшний день не используются. Так же были модули RIMM, которые пыталась продвигать компания Intel вместе со своим процессором Pentium 4, но они так и не прижились.

SDRAM — это вид ОЗУ, который на сегодняшний день используется на всех компьютерах и ноутбуках. Расшифровывается как «Synchronous Dynamic Random Access Memory», что в переводе на великий и могучий означает: «синхронная динамическая память с произвольным доступом».

DDR, DDR2, DDR3, DDR4 — это тип используемых планок SDRAM. Под аббревиатурой подразумевается «Double Data Rate», то есть «Удвоенная скорость передачи данных». На сегодняшний день насчитывается аж 4 типа, самый современный из них на сегодняшний день — DDR4 с частотой 2800 МГц (PC22400). Этот тип только-только появился на рынке, но планируется, что к концу 2016 года полностью займёт доминирующее положение на рынке.

GDDR — тип оперативной памяти ОЗУ для видеокарт, отличающаяся от обычных ДДР, используемых на компьютерах и ноутбуках, более высокой частотой работы, а так же более низким энергопотреблением и тепловыделением. Самый современных тип ОЗУ для видеокарт — GDDR5.

Как узнать сколько оперативной памяти стоит на компьютере или ноутбуке?!

Чтобы посмотреть объём установленной оперативной памяти на компьютере или ноутбуке — совершенно не обязательно его разбирать. Эту информацию можно посмотреть в информации от операционной системы. В частности в Windows 7, 8 или Виндовс 10 достаточно просто зайти в «Свойства системы» через «Панель инструментов» или нажать комбинацию клавиш Win+Pause. Откроется вот такое окно:

В разделе «Система» смотрим строчку «Установленная память (ОЗУ)», в ней как раз и указано сколько стоит оперативной памяти.

https://www.youtube.com/watch?v=6pK8uwvIwVo

Если Вам нужно узнать более продвинутую информацию — сколько модулей ОЗУ установлено, какой объём, тайминги и частота планок — воспользуйтесь одной из специальных диагностических утилит — Aida64, Everest, SiSoft Sandra и т.п. Интерефейс у них примерно похожий. Заходим в сводку информации по установленному оборудованию «Summary» и смотрим в раздел «Материнская плата» (Motherboard), строчка «Системная память» (System Memory):

Как увеличить объём оперативной памяти?!

Здесь ответ очень просто — идём в магазин и покупаем. Но перед тем, как отправляться в путь — запустите одну из указанных выше программ и посмотрите сколько модулей уже установлено в материнскую плату и есть ли свободные места. Затем, перепишите название, марку, модель и частоту используемых планок ОЗУ. Ну или просто сфотографируйте окно с информацией на телефон и покажите продавцу-консультанту в магазине. Далее он уже предложит выбор доступного товара.

Источник: https://set-os.ru/operativnaya-pamyat-ozu-ram/

RAM – что это, как работает, виды, особенности, характеристики

Оперативная память РАМ что это такое?

Вопросы по поводу термина RAM, что это, как работает, где и для чего используется, могут появиться у пользователя, заметившего такое название в описаниях характеристик ПК, требованиях к компьютерным программам и играм.

Аббревиатура образована от английского названия памяти с произвольным доступом (Random Access Memory) и на русском языке называется оперативным запоминающим устройством или ОЗУ.

В RAM хранятся обрабатываемые процессором данные и выполняемый код – но только пока работает вычислительное устройство.

Назначение и принцип работы

Основным назначением RAM является хранение временных данных, необходимых компьютеру только во время его работы.

В эту память загружаются данные, которые будут выполняться процессором напрямую.

К ним относят исполняемые файлы (в первую очередь, с расширением .exe) и библиотеки, результаты различных операций, которые выполняются в процессе работы ПК, и коды нажатых клавиш типа CapsLock, Ins и т.д.

Принцип работы RAM следующий:

  • Все ячейки памяти находятся в своих строках и столбцах;
  • На выбранную строку памяти приходит электрический сигнал.
  • Под действием сигнала открывается транзистор.
  • Присутствующий в конденсаторе заряд подаётся к нужному столбцу, подключённому к чувствительному усилителю;
  • Поток электронов, создаваемый разрядившимся конденсатором, регистрируется усилителем и приводит к подаче соответствующей команды.

Рис. 2. Общая схема обработки данных вычислительной техникой.

Важно: При подаче электрического сигнала на определённую строку открываются все её транзисторы. Отсюда следует, что минимальным объёмом данных, который считывается из памяти, является не ячейка, а строка.

Из-за того что принцип действия RAM основан на полупроводниках, хранящиеся в этой памяти данные остаются доступными только при подаче электротока.

При отключении напряжения питание обрывается, а все данные в ОЗУ полностью стираются.

Виды и особенности RAM

Существует два вида операционной памяти – статическая SRAM и динамическая DRAM.

Первая обычно имеет небольшой объём (в пределах нескольких мегабайт) и используется как кэш.

Её преимуществами являются повышенная надёжность и производительность, а недостатками – высокая стоимость и небольшая плотность размещений транзисторов.

Рис. 3. Память типа SRAM.

В качестве ОЗУ для вычислительной техники SRAM не применяется из-за того что размеры планок «оперативки» были бы слишком большими.

Для оперативной памяти больше подходит DRAM – скорость её работы ниже, однако эта версия RAM выигрывает за счёт небольшой цены и высокой плотности расположения полупроводников.

Рис. 4. Модули DRAM.

Конструктивные исполнения DRAM

В зависимости от выполняемых задач модули динамической памяти DRAM выпускаются в различном исполнении:

  • SIPP – память в виде пластины, контакты которой представляют собой небольшие штырьки. Эта версия RAM уже не используется.

Рис. 5. Память SIPP.

  • SIMM, модули в виде длинных прямоугольников с контактными площадками вдоль одной стороны и защёлками для установки. Самые распространённые версии – с 30 и 72 контактами. Объём такой памяти, которая тоже сейчас не выпускается, был равен 256 КБ и 1–128 МБ.
  • DIMM – платы, контактные площадки на которых располагаются с двух сторон. Прямоугольные пластины, так же как и модули SIMM, устанавливаются с помощью защёлок. Расположение микросхем может быть и односторонним, и двухсторонним, а количество контактов – до 288 (для DDR4).
  • SO-DIMM – те же модули DIMM, но уменьшенного размера, предназначенные для установки в небольших корпусах ноутбука или системных блоках с форм-фактором Mini-ITX. Эти же платы стоят в принтерах и других видах техники, которой требуется для работы оперативная память. Количество контактов может достигать 260 (SO-DIMM DDR4).
Читайте также  Что значит оперативная память в телефоне?

Рис. 6. Отличия модулей DIMM и SO-DIMM.

Ещё один вариант DRAM – модули RIMM, которые из-за особенностей конструкции устанавливаются только парами, хотя сейчас практически не применяются. Память имеет 160, 168, 184 и 242 контакта. Существует уменьшенная разновидность этой «оперативки», SO-RIMM, предназначенная для портативных компьютеров.

Основные параметры RAM

Одной из главных характеристик RAM, на которые обращают внимание практически все пользователи ПК, является её объём.

В какой-то степени, это правильно, но при выборе оперативной памяти для компьютера стоит ориентироваться ещё и по таким рабочим параметрам:

  • тип памяти;
  • частота работы;
  • тайминги или временные задержки сигнала.

Все эти параметры связаны. Так, ОЗУ типа DDR1 может иметь рабочую частоту шины от 200 до 400 МГц, DDR2 – от 200 до 533 МГц, DDR3 – 800 до 2400 МГц.

https://www.youtube.com/watch?v=hb1Dt6tUzKw

Аналогичный показатель более современных модулей DDR4 достигает уже 3200 МГц, что позволяет ей работать заметно быстрее.

Все параметры RAM должны соответствовать характеристикам материнской платы и центрального процессора компьютера. При этом память другого типа просто не получится установить из-за несовпадения контактов и слотов, ОЗУ с неподходящей частотой может работать некорректно, а неподдерживаемый объём не позволит компьютеру запуститься. Например, 8-гигабайтный модуль DIMM не стоит устанавливать на «материнку» с поддержкой только 4 Гб для каждого слота.

Тайминги и напряжение

Таймингом называется продолжительность задержки в процессе передачи информации между различными компонентами вычислительной техники.

Его значение непосредственно влияет на скорость работы RAM, а значит, и всего компьютера (или другого устройства).

Небольшой тайминг означает, что операции будут выполняться быстрее.

Время задержки обратно пропорционально быстродействию ОЗУ.

Для решения проблемы производители RAM повышают рабочее напряжение, уменьшая тайминги. Это позволяет увеличить число выполняемых за единицу времени операций, однако требует и более ответственного отношения к выбору памяти, которая должна совпадать ещё по вольтажу.

Объём ОЗУ

Один из главных параметров RAM, объём, должен не только совпадать с характеристиками материнской платы, но и соответствовать требованиям пользователя.

В настоящее время оптимальным вариантом для среднего ПК является показатель в 4–8 Гб.

Для офисных компьютеров может хватить и 1–2 Гб, но большинство современных программ будут зависать, для игровых моделей размер ОЗУ должен быть не меньше 8–16 Гб.

Ограничения по объёму памяти существуют не только для материнских плат (старые модели не позволяют установить больше 4 Гб), но и для операционных систем. Ни одна 32-битная платформа не поддерживает больше 3 Гб ОЗУ. 64-битные системы и современные «материнки» позволяют устанавливать до 128 Гб – именно такой объём имеет и самый большой модуль памяти DDR4.

Пропускная способность оперативной памяти зависит от её частоты – параметра, который тоже связан с возможностями материнской платы и ЦПУ.

При установке RAM со скоростью передачи данных 1600 миллионов операций в секунды (МГц) на устаревшем компьютере модуль будет работать медленнее.

Если материнская плата и процессор поддерживают, например, только 1066 МГц, такая же частота будет и у ОЗУ.

Рис. 7. Показатели RAM на планке памяти.

Влияет на скорость работы и количество планок RAM – двухканальная (установленные парами одинаковые модули) память будет работать на 10–50 быстрее одноканальной. Поэтому при установке на ПК 8 Гб ОЗУ стоит отдать предпочтение двум платам по 4 Гб или четырём по 2 Гб. Достаточно редкий вариант – трёхканальная память, работающая ещё быстрее и устанавливаемая по 3 планки.

Принцип действия и другие характеристики RAM стоит знать не только специалистам, которые занимаются сборкой вычислительной техники, но и обычным пользователям.

Тем более что никто не мешает любому владельцу компьютера самостоятельно подобрать подходящий модуль ОЗУ.

Но делать это без сравнения показателей памяти и других комплектующих ПК не рекомендуется.

Источник

Источник: https://pomogaemkompu.temaretik.com/1578309572454778887/ram---chto-eto-kak-rabotaet-vidy-osobennosti-harakteristiki/

Для чего оперативная память компьютеру, виды оперативной памяти

Оперативная память РАМ что это такое?

Gigway

Советы по выбору оперативной памяти, важных характеристиках, типах и лучших производителях ОЗУ

Наверно многим приходилось выбирать компьютер в магазине и само собой вставал вопрос сколько оперативной памяти должно быть в вашем новом компьютере. Для того чтобы ответить на этот вопрос давайте разберемся, что такое оперативная память и для чего оперативная память нужна каждому пк.

Оперативная память для компьютера (RAM – Random Access Memory, ОЗУ) устройство предназначенное для временного хранения информации. Все данные находящиеся в ОЗУ (Оперативное запоминающее устройство) удаляются при выключении компьютера. С тем что такое оперативная память разобрались ,теперь рассмотрим для чего оперативная память вашему компьютеру. Оперативная память очень важная составляющая компьютера от неё напрямую зависит производительность всего ПК. Если вы планируете играть в игры, работать с графикой или видео ,то объём оперативной памяти особенно важен. Чем больше объем оперативной памяти для компьютера — тем большее кол-во данных в неё может поместиться, следовательно быстродействие вашего компьютера будет выше.

Многие неопытные пользователи считают памятью объем жесткого диска. Это в корне неверно оперативная память пк и объем жесткого диска совершенно разные вещи.

Как выбрать оперативную память?

Имея представление о том для чего оперативная память в вашем ПК перейдем к следующему этапу: разберем какие виды оперативной памяти бывают, какой объем оперативки выбрать,что такое тактовая частота модулей памяти и тайминги, а также рассмотрим лучших производителей оперативной памяти для компьютера.

В компьютерных магазинах без труда можно отыскать модули памяти разных объемов от 1 до 4 гигабайт и разные вариации наборов 2, 3, 4 модуля оперативной памяти в комплектах. Перед тем как выбрать оперативную память, определитесь какой объем необходим именно вам.

В первую очередь обратите внимание на операционную систему вашего ПК так для запуска современной ОС Windows 7 потребуется 1 гигабайт (ГБ) (для 32-разрядной системы) или 2 ГБ (для 64-разрядной системы) оперативной памяти (ОЗУ).

Допустим на вашем пк установлена 64-разрядная система Windows 7 и вы планируете использовать компьютер при работе с офисными приложениями, бродить по интернету, прослушивать музыку и смотреть видео в этом случае вам к используемой системой 2 ГБ оперативной памяти достаточно добавить модуль памяти объемом 1024 Мб (1 Гб). Для легких компьютерных игр и работы с графикой достаточно 2 ГБ, если вам необходима поддержка требовательных компьютерных игр желательно иметь объем оперативной памяти более 3 ГБ.

Тип оперативной памяти для ПК

Память типа DDR и DDR2 уже считаются устаревшими. Поэтому мы рассмотрим память типа DDR3, которая является самой распространенной на сегодняшний день.

ОЗУ DDR3 — модель оперативной памяти является дальнейшим развитием популярной DDR2. Память представляет собой DIMM-модуль (планка) на одной стороне которой находятся 240 контактов и один пробел ,который выполняет функцию ключа, способствуя единственно верному положению при установке на материнскую плату.

Типы оперативной памяти DDR3

Модуль памяти;Частота шины МГц;Чип;Пропускная способность Мб/с

PC3-8500;533;DDR3-1066;8533PC3-10600;667;DDR3-1333;10667PC3-12800;800;DDR3-1600;12800PC3-14400;900;DDR3-1800;14400PC3-15000;1000;DDR3-1866;15000PC3-16000;1066;DDR3-2000;16000PC3-17000;1066;DDR3-2133;17066PC3-17600;1100;DDR3-2200;17600PC3-19200;1200;DDR3-2400;19200

Частота шины памяти и частота шины процессора это две разные вещи не путайте их

Очень часто на прилавках компьютерных магазинов можно обнаружить чуть более дорогие модули оперативной памяти с маркировкой «LV» — Low Voltage, что означает ОЗУ с пониженным напряжением питания. Это означает , что при разгоне память сможет достичь более высоких частот, используя меньше напряжения — это должно положительно отразится на тепловыделении модулей памяти, а следовательно эффективность их работы возрастет. Запомните: модуль памяти одного типа будь то DDR2 либо DDR3 нельзя вставить в слот для памяти другого типа он просто физически не подойдет.

Что значит ECC в обозначении модуля памяти?

В описании некоторых модулей памяти можно увидеть обозначение «ECC» — Error-Correcting Code в переводе на русский звучит как «Код коррекции ошибок». Аналогом может быть другой вариант: Error Checking and Correction, что значит проверка и исправление ошибок.В модулях памяти с подобной маркировкой на борту присутствует специальный контроллер, который используется для обнаружения и исправления разных ошибок ОЗУ.

С теоритической точки зрения система «ECC» должна увеличить стабильность работы оперативной памяти. На деле вам вряд ли удастся заметить разницу в работе между обычной памятью и более дорогой памятью ECC. Поэтому покупать такую оперативную память особого смысла нет. Выбирая оперативную память для компьютера примите во внимание частоту на которой она работает.

Рекомендуется выбирать память ОЗУ чтобы она совпадала с частотой поддерживаемой материнской платой — процессором. К примеру вы купите память DDR3-1600 и установите с процессором поддерживающим только DDR3-1333, модуль памяти сможет работать как DDR3-1600, но иногда это может вызывать ошибки в ходе работы компьютера.

В памяти типа DDR (Double Data Rate) за один такт производится две операции с данными, следовательно для вычисления тактовой частоты ОЗУ ,нужно частоту её шины помножить на два. Также величину тактовой частоты можно увидеть в типе чипа (пример DDR3-1333) числовое значение указывает нам на то, что память работает на частоте 1333 МГц.

От величины частоты зависит производительность оперативной памяти — чем выше частота, тем выше производительность. Самые популярные и покупаемые на сегодняшний день являются модули памяти типа DDR3 с тактовой частотой 1333 и 1600МГц.